STRESS STATE OF AN ELASTIC PLANE WEAKENED
BY AN INFINITE SERIES OF LONGITUDINAL —
TRANSVERSE CRACKS

L. M. Kurshin and I, D. Suzdal'nitskii UDC 539.013

Use of the fact that a singular operator transforms a polynomial again into a polynomial
permitted obtaining substantially new results in {1], devoted to wing theory. This property
of singular operators is used to solve the plane problem of elasticity theory for a plane
weakened by cracks. The criterion for the beginning of crack growth is related in the linear
theory of fracture to the stress-intensity factor at its end. An investigation of the influence
of the mutual arrangement of cracks on the intensity factor is of considerable inferest. The
intensity factor is zero in the stretching of a plane weakened by a longitudinal slit, but this
factor grows in the presence of a transverse slit and may even exceed the intensity factor
at the end of the transverse slit. In this case stratification of the material, the develop-
ment of cracks located along the loading line, starts. Fractures of this kind have been ob-
served in experiments. To solve the problem of determining the stress-intensity factor at
the end of a longitudinal crack in the presence of a transverse crack, the consideration of a
periodic system of longitudinal—transverse cracks turns out to he effective. Introduction of
symmetry simplifies the construction of the solution of the problem, on the one hand, and is
a good approximation to the problem of the mutual influence of two cracks for a sufficient
mutual removal of the slits, on the other.

1. Let a plane weakened by the following two periodic systems of slits be given (Fig. 1). The longi-
tudinal slits are directed along the line y = 0, have identical length 2c, and are located in intervals of length
2b (¢ < b) so that their middles x = 2kb(k = 0, +1, £2,...) coincide with the centers of the intervals. The
transverse slits, perpendicular to the line y = 0, have the identical length 2¢ with middles located at the
points

z=0b,=(2k+1) b, y=0.
Given at infinity are the stress

os]
0F =0,, Oy =0y Txy=T,

aﬁd the edges of the slits are stress-free.

2 ‘ —— b= The problem reduces to an equation for the stress function
MU=0, A=( Justl Iy (1.1)

under the conditions
Uyy=0y, Uge=0,, Ugy= — 1, (1.2)

Fig. 1
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at infinity,

U= 3 Li Li= 2k —c<a<o%b+e, y=0)

[ ~ _ . (1.3)
L"nz ny=0
on the edges of the slits on the line L' = % L, Li=ir=b, —a<y<a ,and
Uyy=Usy =0. (1.4)

on the line

We seek the solution of the problem in the form

where

Uz, y) = U=(z.y) -+ Uiz, 9) + h:_;‘:ng‘h (7, y), (1.5)
U”(z,y) = —j— (0,4 + 6,7%) — 1ay; (1.6)
Ve =g [ (h @@ -0+ @ nIn -0ty wn
i
Usp(z,y) = 24,— \ [fs() (x — by) + F5() (¥ — D] 1nf(z — by)* + (y — n)*| dn. (1.8)
. Lk

The function (1.6) assures compliance with condition (1.2), while the form of the representations (1.7)
and (1.8) is indicated by the application of the Fourier transform, as has been done in [2], so that the fol-
lowing representation of the solution of (1.1) results:

U@y =g | 116 @—8+hE yInl(z—8*+ 2 dE.

Requiring that the functions fy (), f,(£) vanish outside the line L', including the ends of its compo-
nent segments L{(, we obtain (1.7), The function Uj (x, y) introduces singularities associated with weakening
of the plane by longitudinal slits into the general solution of the problem. The representation (1.8) can be
obtained analogously, with the sole difference that infegration here is over the line x = by = (2k + 1)b‘be-
tween the limits —e <y < « and the functions f3 (1), f,{) are assumed zero outside the segment Ll'; and
on its ends. The functions U, x (x, y¥) introduce singularities associated with the transverse slits into the
general solution of the problem.

The conditions (1.8) and (1.4)Vat the slit edges for the derivative functions (1.5) result in a system of
four singular integral equations:

B g . " ,
5 ﬁi—g:;yi dt + 2 Gon{(x — by) (2f5 -+ nfs) — nfy —nf) = — noyg (1.9)
L’ ° R==—o0 :
g’ L k D Gopl—nfy+ (= b fs =z — b fil = am; (1.10)
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3 G lfs oy —maly — i G (B —B [, fr = yiaH-2yfy — (b — B f;} = — nio,- (L.11)

5 f4+(y—ﬂ)f,
y—1 h=—ow
Ly k=0
S yf",,+,,2 Glr (g — M is+ (0 — b ol + G, (b — &) (£ -+ ¥h) + P2l = a7, (1.12)
Ly
where fj =fj(£) forj=1, 2; fj = fj M) for j = 3, 4;
S, ydE
618} = gm
8, (n, 2)dn
Cor (@) = | gy
. Lk .
Gop 1S} = Gon (S (D).

Here 2
=+

R==—

[
Y Gl —b)f) =0
The members containing ¢y = ¢/b, @ = a/b in powers not above the fourth will be retained later in

(B dE_ -

2 jz-g 2%

+5 e E)’)] f@ae+0(c);

solving the system (1.9)-(1.12)
It is possible to write (1%/4b? = €)

s')‘(’é)d§ 2 j‘ f(§)d§

B Ei—e

PICE IR °f(§)2(=—ad=
=_.S z—E +§ _5(z—§)’+4k2b‘ z—E
f@aE 1 &) dE L e .
O e 2 S[(Zk—i)b+§1=+y = [+ ger—nlroatow@

specified above, we replace the system (1.9)-(1.12) by the system
§Ih+ @0l B —0d— [ (2h+nf) by, )+ (fu+ i) hole, WY dn = — 70,

[ 1l (= —B a8+ § (fiky (@) — (f3 4 053) g (2, W) @y = mo7;
§ ot =) Haly —mydn + 5 ((2f; + yh) ha(Es 9) — (721 — 9f2) 2y (8, y)) dE = — noy;

{ raHsy—mdn+ § i@y — (Ffa+ yf) b € 9)) = ax

The kernels of Egs. (1.13)-(1.16) are
1 3 g® .3
H@)=+—5t—z5t H, () = ++3
1 3 g?
=73ttt Ets’

hy (s, 8) = s[e —2 (3t — s")], ho (s t) =1 [e — 5 (32 tz)]
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o= =0+
Analogous expansions are introduced for the remaining members. Hence, by conserving the accuracy

(1.13)

(1.14)

(1.15)

(1.186)



Let us note that for a = 0 the system (1.9)-(1.12) degenerates into

t (h@e_ LS’MEM%
4 11

n r—E§
o

whose solution yields results obtained for a number of collinear cracks [3]. For ¢ =0, 0y = 6, =0, fi=0
and conservation of (a/b)? accuracy in the solution, the system (1.13)-(1.16) reduces to the equation

v ¥—M
~—a

a a
/ d 2
O 2 )y~ dn = e
—a
whose solution turns out to agree with the solution obtained in [4] for a number of vparallel cracks.,

2. Let 0y=0,=0,7# 0, Let us assume fy(§) = f4(7) = 0 and the functions f, (£) and f3 (M) to be
odd relative to their arguments. Equations (1.13) and (1.15) will automatically be satisfied, but after inte-
gration by parts (1.14) and (1.16) are written as

a

(@B @@=+ | o) nle+et(a* —n))dn = ns

[ rmEE-min— [ @s+5 00 +8)]a=n
Let us make the substitution

= —CCOSQ, L= —CCOSQ, %N=—acost, y= —a cosd,

and let us assume

_, _1cw, (E) _ taog ()
f2 (g) . Vc*——i"" fa ('I) V-;T_—nz,

where
0, (E) = 0y (— c cos g) = ngl'mzn cos (2n + 1) 9, (2.1)
g (M) = 0 (—acos®) = 21 @gq coS (20 + 1) ©.

Using the formula

T

Y cos nada sin np
=R =,

.) cos @ — ¢cos B sin B

we obtain an algebraic system of equations to determine the coefficients of the expansions (2.1). Using the
notation p = (7¢/ b)?, q = (ma/ b)? and conserving terms containing the quantities p and q in powers not above
the second, we find the coefficients of the desired functions in the case of problems with shear:

_ P, g4 P _pg—7¢ _ P P
op=1+yz+tg+m 355 0 P T 1935 T 1o (2.2)

p g9 _5p:+1lpg ¢ _rq__ g

Op=1—g Ty~ 70 T TiE M

Let 0y ® 0, 0, # 0, T=0, Letusassume f;(§) = f3(1) = 0 and functions f1(§), f, () to be odd. Re-:
peating the same reasoning, in the case of longitudinal tension (0; # 0, ¢, =T =0)
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__ 61cty (§) _ G (n) | 2.
fl (g) - ]_[2_—2—:_—&—2 ' f4 (ﬂ) = .'/-;_'2‘?_;];, ( 3)
@y (§) = a,(—ccos @) = Z’ 2ncos (2 4 1) @,
n=
. (2.4)
a; (M) =a,(—acos®) = D ancos(2n--1)9,
n=q
where
=9 3 3 _ P9
%o=—"g 7?7 “1gPl %u= g (2.5)
2 2
a4o=“—1‘—‘%—q—8+6—z, Oy = ——;—34

In exactly the same way in the case of transverse tension (¢; = 7= 0, 0y # 0), by replacing the func-
tions o4 (£), o, (M) in (2.3) and (2.4) by By (£), B, (M) and the coefficients %y by ﬁjn, we find

— P _ P pg p?

Po=—1—g—GBT@m Bu=—33p (2.8)
_ P . 3 pg _ __Pg

Po=g tm— s Bu=—gm%

Let us evaluate the value of the stress-intensity coefficients at the ends of the longitudinal and trans-
verse slits. To determine them, as is usual [5], let us introduce the functions Z; (z), Z, (z) associated, re-
spectively, with the tension 0 and the shear T, whose argument is the complex variable z =x + iy (z = x—
iy). Hence, in the tension case

o,=ReZ,—yImZ|, o,=ReZ, - yZ

and in the shear case

0. =2ImZ, +yReZ;, o,=—yReZ. (2.7)
By virtue of the relationships (2.7) and the representations (1.5)-(1.8) we have

—_ 2 ( _"E)f '1.‘ f i
2(ReZ1—,‘—Im22)=0x+cy__AU=;—§—:%I—:—§—),L$dg+

Q2 ((E=b) s u—n, U fitifs e
+ 2 ?5 b — W d"=2Re-TLS”lE+_’iyd5‘

h=—2

v 1 fo—if
~2lm ¥ 5 |y dn
L .

13

Therefore,

Zl(z):'i_j _b_d_';':% N % Y.__fiL (2.8)
L

SI i1 (8) dg_x_ S1 (z)’ (2.9)
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LF ‘ B " where S;(z) is a regular function in the neighborhood of a longitudinal
: slit. By virtue of (2.3) and (2.4), for longitudinal tension
2 — . .
S Adh\N\Y S R
NN IINCY I :
- /E , T8 VICE O e st il P
N D S : 2 — gz —§)
~ §~Y\ \ —c —¢
NN \ 3 ¢ c
0 — n ; t AT
0,4 ‘\ \\t A\ /e _G (alon‘T Oy1) S E—Etd‘f - 4(::;11 §]§ci - g dg _
LN \\ ! cV”"“:(Z"“g-) e -
A vl 4 . z 4 2 )
* \ N2 =0y [(am +an) (m - i) + %;1 (Z Va?—cf -2 %)] (2,10)
-2 AY AY :
\ ‘s
\4 Evaluation of the integrals encountered here is presented in {6].
Fig. 4 Therefore, the singularity of the function Z4 (z) is o(ayg + ayy) X

z/V'z°—c?, whereupon the stress-intensity factor at the end of a longi-
tudinal slit under longitudinal tension turns out to equal

K = ifi‘o [Vm,z1 (=, 0)] = lim V’m 0y (@30 + %1y) ‘—"‘“-V——,I 5 =0 Ve (@g0 + @yy)- (2.11)
x->C x-»C xé—cC
The following system of notation is taken here for the étress—intensity factor: the subscript 1 in-
dicates tension and, hence, the superscripts 1 or 2 correspond to tension in the longitudinal and transverse
directions; the subscript 2 corresponds to shear, while the subscripts ¢ and @ correspond to the lon-
gitudinal and transverse slits.

Analogously, we obtain

Koo = lirio[]/ 20 (z — ) Z, (2,0)] =1 V7 (0, + 01y)-

1
For transverse tension K&), 0y, Bigy, P11 should be written, respectively, instead of Ki(c)- 0y, Qyq, Oy

The values of these same quantities at the end of the transverse slit (x = b, y = # @) are obtained by
replacing ¢ by a and the subscripts 10, 11, 20, 21 on the quantities @, B, « by 40, 41, 30, 31, respectively.
The quantities &mn, Bmns ¢ mnp are hence determined by the relationships (2.2), (2.5), and (2.6).

The coefficients Ki(l)/o'p/'l_), Kl(z)/o'zw/'ﬁ, K,/TVD are represented in Figs. 2-4 as a function of ¢/b.
Curves 1-4 correspond to values of a/b equal to 0.2, 0.4, 0.6, 0.8, The solid lines show values of the inten-
sity faectors at the end of the longitudinal slit (x = ¢), and the dashes show the values at the end of the trans-
verse slit (y = @). The singularity in Fig, 2 is the presence of a quite definite maximum of the coefficient
Kﬁz) in the case of longitudinal tension for high values of a/b. At the same time, under shear (Fig. 4) all
the curves K,, have maximal values, where this maximum shifts towards lower values of ¢/b with the in-
crease in a/b, The behavior of K,, is analogous as a/b changes.
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Finally, let us calculate the elastic strain energy-increment on a crack (the work of opening during
crack formation). The transverse displacements of the edge of a longitudinal slit L(') during tension are de-
termined by the relationship

26, =" I ZP — yReZ® (j=1,2),

and its longitudinal displacements under shear are

T A ok ImZ +yReZ,

Here n = 3=w/(1+v);2G=E/(1 + v) is Young's modulus,V is the Poisson ratio, the functions Z(z), Z(z)
are determined by the equalities (2.8), and Z;, 22 are their primitives.

The energy increment on the slit Lg per unit thickness of the sheet in which the crack formed will be
written as
—- j' o~ o7) + 0y (v —v7) +wt —um)] d
Let us evaluate the first member. Integrating the function 25” represented by (2.9) and (2.10) yields
zy (2) =0y [(am + a;_l) (Vm— z) + %n:':-l (1/(2—2:1—‘T)a - — %éaz) -+\»§1:‘(z)]»
where '§1(z) is a regular function on L.
Therefore, on a longitudinal slit
26 (v —o7) = (¢ + 1) ImZf;
ImZM =0, [(“10 + o) Vc’ —a— 302 %11 ViE— 32)3];

e .
1 1 ¢ i et
A4y =2 _j oy Im Z () dz = 2 GFaay.

Finally, the energy increment on one longitudinal crack becomes

AAc (Gx“zam + 02510 + 7 ")zo)

We obtain the energy increment on a transverse crack analogously,

A4, =5 (01“40 + 040564 + T *0g0)
where the quantities oy, By, wy are determined by (2.2) (2.5), and (2.6).
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